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Abstract
The phonon dynamics of the low-temperature superconductor Sr2RuO4 is calculated
quantitatively in linear response theory and compared with that of the structurally isomorphic
high-temperature superconductor La2CuO4. Our calculation corrects for a typical deficiency of
local density approximation-based calculations, which always predict too large an electronic
kz-dispersion insufficient for describing the c-axis response of real materials. With a more
realistic computation of the electronic band structure, the frequency and wavevector dependent
irreducible polarization part of the density response function is determined and used for
adiabatic and nonadiabatic phonon calculations. Our analysis for Sr2RuO4 reveals important
differences from the lattice dynamics of p- and n-doped cuprates. Consistently with
experimental evidence from inelastic neutron scattering, the anomalous doping related
softening of the strongly coupling high-frequency oxygen bond-stretching modes which is
generic for the cuprate superconductors is largely suppressed or completely absent, respectively,
depending on the actual value of the on-site Coulomb repulsion of the Ru 4d orbitals. Also the
presence of a characteristic �1 mode in La2CuO4 with a very steep dispersion coupled strongly
to the electrons is not found for Sr2RuO4. Moreover, we evaluate the possibility of a
phonon–plasmon scenario for Sr2RuO4, which has been shown recently to be realistic for
La2CuO4. In contrast to the case for La2CuO4, in Sr2RuO4 the plasmons that are very low lying
are overdamped along the c-axis.

1. Introduction

The discovery of superconductivity in Sr2RuO4 by Maeno
et al [1] has attracted widespread attention partially because
of the structural similarity with the cuprate-based high-
temperature superconductors (HTSC’s). While the mother
compounds of the HTSC’s are charge transfer insulators,
and they usually need to be doped to become metallic
and show superconductivity, in Sr2RuO4 low-temperature
superconductivity at Tc = 1.5 K condenses from a metallic
state that is a strongly two-dimensional Fermi liquid below
about 20 K. The Fermi surface consists of three weakly
corrugated cylindrical sheets α being hole-like and β and γ

which are electron-like [2]. This is in contrast to La2CuO4

where only one Fermi sheet exists. The mechanism of
conduction in Sr2RuO4 at higher temperatures is an interesting

issue because the c-axis resistivity shows a broad maximum at
around 130 K and for increasing temperatures the resistivity
starts to decrease. In [3] such a metallic to nonmetallic
crossover in the c-axis resistivity of a highly anisotropic metal
like Sr2RuO4 with no corresponding feature in the ab-plane
properties has been related to the strong coupling between the
electrons and a bosonic mode propagating and polarized in c-
direction, like the axial oxygen breathing mode OZ

z , at the Z
point of the Brillouin zone (BZ) to be discussed in section 3.

Superconductivity in Sr2RuO4 is thought to be of
unconventional character and thus is intensively discussed in
the literature. The current state of the experiments points
to triplet superconductivity in Sr2RuO4 in contrast to the
d-wave singlet pairing in the HTSC’s. Most discussion
of the superconducting mechanism for Sr2RuO4 is focused
on magnetic fluctuations and Coulomb repulsion, for a
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review see [4]. However, a contribution of electron–phonon
interaction (EPI) to pairing may not be ruled out because the
superconducting transition exhibits a clear isotope effect [5].
In case of the HTSC’s there is increasing evidence that EPI
is strong and phonons might play an important role for the
electron dynamics, see [6, 7] and references therein.

Thus, a detailed theoretical study of phonon dynamics in
Sr2RuO4 and a comparison with the situation in the HTSC’s
is desirable. The low-temperature superconductor Sr2RuO4

crystallizes in the K2NiF4 structure (I 4/mmm) isostructural to
the HTSC La2CuO4. An analysis and comparison of the lattice
dynamics in both materials is the main intention of the present
work. For this purpose we compute the phonon dynamics
for Sr2RuO4 and oppose it with our earlier calculations for
La2CuO4.

The most characteristic feature of phonon dynamics in
the HTSC’s is the strong softening upon doping of the
high-frequency oxygen bond-stretching modes (OBSM) which
seems to be generic for p- as well as n-doped cuprates,
see [6–9]. The strong frequency renormalization and a
related increase of the linewidths observed for these anomalous
modes point to a strong coupling of the phonons to the
charge dynamics. A discussion and theoretical investigations
of these phonon anomalies are presented e.g. in [6–8, 10].
In agreement with inelastic neutron scattering [11] our
calculations demonstrate that the typical OBSM phonon
anomalies of the cuprates are not present in Sr2RuO4.
Moreover the characteristic �1 branch related to the strongly
coupled OZ

z mode in La2CuO4 is missing in Sr2RuO4.
In order to achieve reliable results for the �1 phonon

modes propagating and polarized along the c-axis a careful
calculation of the proper polarization part of the density
response function is crucial. This has already been shown
for La2CuO4 in [12] where we have proven that the �1

modes are highly sensitive with respect to the charge response
perpendicular to the CuO plane. The large anisotropy
of the electronic structure of the cuprates is as a rule
considerably underestimated in DFT–LDA calculations and
as a consequence the �1 modes are not well described. So
we have modified a LDA-based calculation for La2CuO4 to
account for the much weaker kz-dispersion of the electronic
band structure in the real material.

We have optimized the interlayer coupling in such a way
that the significant features of the sensitive �1 phonons are
well described. The same route is followed in the present
work for Sr2RuO4 to get a realistic representation of the �1

modes and in particular of OZ
z which cannot be described in the

ionic shell model taking additionally homogeneous electron
gas screening into account [11].

Finally, we investigate the question if there is room for
a phonon–plasmon scenario around the c-axis for Sr2RuO4

which has been shown to be a realistic option in La2CuO4 [12].
For a discussion of phonon–plasmon mixing in the cuprates
in the context of many-body polaronic effects in the phonon
spectrum we refer to [13]. Due to the much weaker electronic
kz-dispersion obtained in our computations as compared to
La2CuO4, i.e. a much stronger anisotropy of Sr2RuO4, the
calculated free-plasmon frequencies along the c-axis are about

a factor of eight smaller in the collisionless regime. Damping,
generated by interactions between the electrons as well as
interband transitions which are on a much lower energy scale as
for La2CuO4 very likely leads to overdamping of the plasmons
propagating strictly along the c-axis in Sr2RuO4. Thus,
different from La2CuO4 coupled c-axis phonon–plasmon
modes should not be well defined collective excitations at least
strictly along the � ∼ (0, 0, 1) direction and accordingly do
not enter the list of possible players for pairing in contrast to
La2CuO4.

The paper is organized as follows. In section 2
the theory necessary to understand the calculated results
is shortly reviewed. Section 3 presents the calculations.
The modification of a LDA-based electronic band structure
providing the basis of the single-particle content of the
irreducible polarization part of the density response function is
developed. Furthermore, the phonon dispersion is calculated
in adiabatic approximation for Sr2RuO4 and a comparative
discussion with the situation in La2CuO4 is given. Finally, in a
nonadiabatic calculation the possibility of a phonon–plasmon
scenario is examined. A summary of the paper is given in
section 4 and the conclusions are drawn.

2. Theory and modelling

In the following a brief survey of the theory and modelling
is presented. A detailed description can be found in [10]
and in particular in [14] where the calculation of the coupling
parameters of the theory is presented.

The local part of the electronic charge response and
the EPI is approximated in the spirit of the quasi-ion
approach [7, 15] by an ab initio rigid ion model (RIM) taking
into account covalent ion softening in terms of (static) effective
ionic charges calculated from a tight-binding analysis. The
tight-binding analysis supplies these charges as extracted from
the orbital occupation numbers Qμ of the μ (tight-binding)
orbital in question:

Qμ = 2

N

∑

nk

|Cμn(k)|2. (1)

Cμn(k) stands for the μ-component of the eigenvector of band
n at the wavevector k in the first BZ; the summation in (1)
runs over all occupied states and N gives the number of the
elementary cells in the (periodic) crystal.

In addition, scaling of the short-ranged part of certain
pair potentials between the ions is performed to simulate
further covalence effects in the calculation in such a way that
the energy-minimized structure is as close as possible to the
experimental one [16]. Structure optimization and energy
minimization is very important for a reliable calculation of the
phonon dynamics through the dynamical matrix. Taking just
the experimental structure data as is done in many cases in
the literature may lead to uncontrolled errors in the phonon
calculations.

The RIM with the corrections just mentioned then serves
as an unbiased reference system for the description of the
HTSC’s and can be considered as a first approximation for
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the insulating state of these compounds. Starting with such
an unprejudiced rigid reference system nonrigid electronic
polarization processes are introduced in form of more or less
localized electronic charge fluctuations (CF’s) at the outer
shells of the ions. Especially in the metallic state of the HTSC’s
the latter dominate the nonlocal contribution of the electronic
density response and the EPI and are particularly important
in the CuO planes and the RuO plane. An essential nonlocal
interaction of holes particularly with c-axis polarized optical
phonons in the HTSCs has also been reported in [17, 18]. In
addition, anisotropic dipole fluctuations (DF’s) are admitted in
our approach [14, 19], which prove to be specifically of interest
for the ions in the ionic layers mediating the dielectric coupling
and for the polar modes. Thus, the basic variable of our model
is the ionic density which is given in the perturbed state by

ρα(r, Qλ, pα) = ρ0
α(r) +

∑

λ

Qλρ
CF
λ (r) + pα · r̂ρD

α (r). (2)

ρ0
α is the density of the unperturbed ion, as used in the RIM,

localized at the sublattice α of the crystal and moving rigidly
with the latter under displacement. The Qλ and ρCF

λ describe
the amplitudes and the form-factors of the CF’s and the last
term in equation (2) represents the dipolar deformation of an
ion α with amplitude (dipole moment) pα and a radial density
distribution ρD

α . r̂ denotes the unit vector in the direction
of r. The ρCF

λ are approximated by a spherical average of
the orbital densities of the ionic shells calculated in LDA
taking self-interaction effects (SIC) into account. The dipole
density ρD

α is obtained from a modified Sternheimer method
in the framework of LDA–SIC [14]. All SIC calculations
are performed for the average spherical shell in the orbital
averaged form according to Perdew and Zunger [20]. For the
correlation part of the energy per electron the parametrization
given in [20] has been used.

The total energy of the crystal is obtained by assuming
that the density can be approximated by a superposition of
overlapping densities ρα . The ρ0

α in equation (2) are also
calculated within LDA–SIC taking environment effects, via
a Watson sphere potential and the calculated static effective
charges of the ions into account. The Watson sphere method
is only used for the oxygen ions and the depth of the
Watson sphere potential is set as the Madelung potential at
the corresponding site. Such an approximation holds well
in the HTSC’s [16, 21]. Finally, applying the pair-potential
approximation we get for the total energy:

E(R, ζ ) =
∑

a,α

Ea
α(ζ ) + 1

2

∑

(a,α) �=(b,β)

	αβ(Rb
β − Ra

α, ζ ). (3)

The energy E depends on both the configuration of the ions
{R} and the electronic (charge) degrees of freedom (EDF) {ζ }
of the charge density, i.e. {Qλ} and {pα} in equation (2). Ea

α are
the energies of the single ions. a, b denote the elementary cells
and α, β the corresponding sublattices. The second term in
equation (3) is the interaction energy of the system, expressed
in terms of anisotropic pair-interactions 	αβ . Both Ea

α and 	αβ

in general depend upon ζ via ρα in equation (2).
The pair potentials in equation (3) can be separated into

long-ranged Coulomb contributions and short-ranged terms,
for details see e.g. [14].

From the adiabatic condition

∂ E(R, ζ )

∂ζ
= 0 (4)

the electronic degrees of freedom ζ can be eliminated, an
expression for the atomic force constants can be given and from
this the dynamical matrix in harmonic approximation can be
derived as

tαβ

i j (q) = [tαβ

i j (q)]RIM

− 1√
Mα Mβ

∑

κ,κ ′
[Bκα

i (q)]∗[C−1(q)]κκ ′ Bκ ′β
j (q). (5)

The first term on the right-hand side denotes the contribution
from the RIM. Mα , Mβ are the masses of the ions and q is a
wavevector from the first BZ.

The quantities B(q) and C(q) in equation (5) represent the
Fourier transforms of the electronic coupling coefficients and
are calculated from the energy in equation (3), i.e.

Bab
κβ = ∂2 E(R, ζ )

∂ζ a
κ ∂ Rb

β

, (6)

Cab
κκ ′ = ∂2 E(R, ζ )

∂ζ a
κ ∂ζ b

κ ′
. (7)

κ denotes the EDF (CF and DF in the present model, see
equation (2)) in an elementary cell. The B coefficients describe
the coupling between the EDF and the displaced ions (bare
electron–phonon coupling), and the coefficients C determine
the interaction between the EDF. The phonon frequencies
ωσ (q) and the corresponding eigenvectors eα(qσ) of the
modes (qσ) are obtained from the secular equation for the
dynamical matrix in equation (5), i.e.

∑

β, j

tαβ

i j (q)eβ

j (q) = ω2(q)eα
i (q). (8)

The equations (5)–(8) are generally valid and, in particular, are
independent of the specific model for the decomposition of the
perturbed density in equation (2) and the pair approximation
in equation (3) for the energy. The lengthy details of the
calculation of the coupling coefficients B and C cannot be
reviewed in this paper. They are presented in [14]. In this
context we remark that the coupling matrix Cκκ ′(q) of the
EDF–EDF interaction, whose inverse appears in equation (5)
for the dynamical matrix, can be written in matrix notation as

C = �−1 + Ṽ . (9)

�−1 is the inverse of the proper polarization part of the density
response matrix and contains the kinetic part to the interaction
C while Ṽ embodies the Hartree and exchange–correlation
contribution, because they are related to the second functional
derivatives with respect to the density ρ of the kinetic energy
and the exchange–correlation energy, respectively [10]. C−1

needed for the dynamical matrix and the EPI is closely
related to the linear density response matrix and to the inverse
dielectric matrix ε−1, respectively.

Only very few attempts have been made to calculate the
phonon dispersion and the EPI of the HTSC’s using the linear
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response method in form of density functional perturbation
theory (DFPT) within LDA [22–25]. These calculations
correspond to calculating � and Ṽ in DFT–LDA and for the
metallic state only. On the other hand, in our microscopic
modelling DFT–LDA–SIC calculations are performed for the
various densities in equation (2) in order to obtain the coupling
coefficients B and Ṽ . Including SIC is particularly important
for localized orbitals like Cu 3d in the HTSC’s. Our theoretical
results for the phonon dispersion [6, 8, 19], which compare
well with the experiments, demonstrate that the approximative
calculation of the coupling coefficients in our approach is
sufficient, even for the localized Cu 3d states. Written in matrix
notation we get for the density response matrix the relation

C−1 = �(1 + Ṽ �)−1 ≡ �ε−1, ε = 1 + Ṽ �. (10)

The CF–CF submatrix of the matrix � can approximatively
be calculated for the metallic (but not for the undoped and
underdoped) state of the HTSC’s from a TBA of a single-
particle electronic band structure. In this case the electronic
polarizability � in tight-binding representation reads:

�κκ ′(q, ω = 0) = − 2

N

∑

n,n′,k

fn′(k + q) − fn(k)

En′(k + q) − En(k)

× [C∗
κn(k)Cκn′(k + q)][C∗

κ ′n(k)Cκ ′n′(k + q)]∗. (11)

f , E and C in equation (11) are the occupation numbers, the
single-particle energies and the expansion coefficients of the
Bloch functions in terms of tight-binding functions.

The self-consistent change of an EDF at an ion induced
by a phonon mode (qσ) with frequency ωσ (q) and eigenvector
eα(qσ) can be derived in the form

δζ a
κ (qσ) =

[
−

∑

α

Xκα(q)uα(qσ)

]
eiqRa

κ ≡ δζκ(qσ)eiqRa
,

(12)
with the displacement of the ions

ua
α(qσ) =

(
h̄

2Mαωσ (q)

)1/2

eα(qσ)eiqRa ≡ uα(qσ)eiqRa
.

(13)
The self-consistent response per unit displacement of the EDF
in equation (12) is calculated in linear response theory as:

X(q) = �(q)ε−1(q)B(q) = C−1(q)B(q). (14)

The generalization for the quantity � in equations (9)
and (10) needed for the kinetic part of the charge response
in the nonadiabatic regime, where dynamical screening effects
must be considered, can be achieved by adding (h̄ω +
iη) to the differences of the single-particle energies in the
denominator of the expression for � in equation (11). Other
possible nonadiabatic contributions to C related to dynamical
exchange–correlation effects and the phonons themselves
are beyond the scope of the present approach. Using
equations (10) for the dielectric matrix, ε, and the frequency
dependent version of the irreducible polarization part, �,
according to equation (11), the free-plasmon dispersion is
obtained from the condition,

det[εκκ ′(q, ω)] = 0. (15)

(a) (b)

Figure 1. Calculated phonon dispersion for La2CuO4 of the c-axis
polarized �1 modes [12] based on the 31BM for the proper
polarization part �κκ ′ (a) and the M31BM (b), respectively. The
experimental data are represented as open squares (��). The full dot
(•) denotes the OZ

z mode and the open circle (◦) the AZ
2u (ferro)

mode.

The coupled-mode frequencies of the phonons and the
plasmons must be determined self-consistently from the
secular equation (8) for the dynamical matrix which now
contains the frequency ω implicitly via � in the response
function C−1. Such a nonadiabatic approach is necessary for a
description of the interlayer phonons and the charge response
within a small region around the c-axis as performed in [6, 12]
and in the present paper for Sr2RuO4.

3. Results and discussion

3.1. Modification of the LDA-based band structure for
Sr2RuO4 and �1 phonons

We shortly recall the construction of a modified LDA-based
model for La2CuO4 which better describes the real anisotropy
of the HTSC’s that as a rule is not correctly represented in LDA
being generally too isotropic. In our effort to obtain a reliable
description of the �1 phonons polarized and propagating
along the c-axis of the cuprates [12] we have shown that
these modes are highly sensitive with respect to details of
the c-axis coupling and thus a very accurate representation
of the electronic kz-dispersion is needed. Typical LDA-based
computations lead to an overestimation of the kz-dispersion
and give imprecise results for the �1 modes.

In figure 1 we illustrate the degree of inaccuracy for the
�1 phonons, in La2CuO4 as obtained in [12]. Figure 1(a)
shows the result of an LDA-based tight-binding representation
of the electronic band structure (31 band model, 31BM) and
figure 1(b) gives the outcome of a modified band structure

4
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(a) (b) (c)

Figure 2. Calculated phonon dispersion for Sr2RuO4 of the �1

modes based on different models for the electronic band structure as
explained in the text. 27BM (a), M27BM1 (b) and M27BM2 (c). The
experimental values from [11] are represented as open squares (��).
The full dot (•) denotes the OZ

z mode and the open circle (◦) the AZ
2u

(ferro) mode.

(M31BM) with reduced first neighbour Oxy -La parameters of
the 31BM by 1/6 and of the first neighbour La–La parameters
by 1/3. As seen from figure 1 this leads to a much better
result for the phonon modes. The characteristic experimental
features of the dispersion i.e. the step-like structure of the
second highest branch and most significant the third highest
branch with the steep dispersion towards the Z point are not
well reflected by the calculation with the 31BM as input for the
proper polarization part in equation (11). Using, however, the
M31BM the calculated phonon dispersion is in good agreement
with the experiment as can be seen in figure 1(b). The
characteristic features are now well described.

We also find as a consequence of the increased anisotropy
in the M31BM a rearrangement of the three Z point modes with
the highest energy. While in the 31BM the strongly coupling
OZ

z mode is the second highest mode and the AZ
2u (ferro) mode

the lowest one in the M31BM OZ
z is the lowest and A2u (ferro)

the second highest of the three modes. Thus OZ
z is the end

point of the steep branch. During this mode rearrangement the

frequency of OZ
z stays nearly constant while that of AZ

2u (ferro)
is strongly increased.

We have recalled these facts for La2CuO4 because for
Sr2RuO4 a comparable high sensibility of the �1 modes
in dependence of the electronic kz-dispersion occurs and an
analogous mode behaviour for OZ

z and AZ
2u (ferro) results in

response to a weaker kz-dispersion. Likewise as in La2CuO4

this sensitivity of certain c-axis phonons is used to construct
an accurate tight-binding description of the electronic band
structure (BS) in Sr2RuO4.

As a first approximation for the BS we employ a
tight-binding representation of the first principles linearized-
augmented-plane-wave (LAPW) BS as obtained within the
framework of DFT–LDA [26]. This analysis leads to a 27 band
model (27BM) including Sr 4d, Ru 4d and O 2p states.

The associated calculated phonon dispersion for the �1

modes of Sr2RuO4 along the � ∼ (0, 0, 1) direction is
depicted in figure 2(a) and for the relevant �1 and �4 mode
along the � ∼ (1, 0, 0) direction in figure 3(a) together with
the experimental data points [11]. Figures 2(b) and (c) and 3(b)
and (c), respectively, display our results for two modified 27
band models (M27BM1 and M27BM2) with the tight-binding
parameters important for c-axis is coupling (Oxy–Oz , Ru–
Sr, Oxy–Sr, Ru–Oz) reduced by 1/2 and 1/5 with respect to
the LDA-based 27BM. This leads as shown in figures 4(a)–
(c) to a much stronger anisotropy as in the 27BM, i.e. to a
strongly reduced kz-dispersion which is also much weaker than
in La2CuO4 [12].

In figure 4 the reduction of the electronic kz-dispersion is
shown along the cut of the Fermi surface (FS) highlighted in
figure 5(a) when going from the 27BM to the most anisotropic
M27BM2 via an intermediate c-axis coupling in M27BM1.
The best result for the phonon modes in figures 2 and 3,
which are less well described in the 27BM, are obtained for
the highly anisotropic M27BM2, i.e. a nearly two-dimensional
BS reflected by an even considerably weaker kz-dispersion as
in case of La2CuO4, see figure 6 and [12].

It is enlightening to point out that in context with the �1

and �4 branches in figure 3 an investigation of [11] exhibits
that the dispersion cannot be described within a normal ionic
shell model extended by homogeneous electron gas screening
to simulate the metallic character of Sr2RuO4. Two specially
adapted force constants between Ru–Oz and Ru–Oxy had to be
introduced to mimic the observed dispersion. Of course these

(a) (b) (c)

Figure 3. Calculated phonon dispersion for Sr2RuO4 of a �1 mode (——) and a �4 mode (— · —) based on the 27BM (a), the M27BM1 (b)
and the M27BM2 (c). The experimental data points [11] are characterized by open squares (��) for �1 and by full squares (�) for �4. The full
dot (•) and the open circle (◦) at the Z point represent OZ

z and AZ
2u, respectively.
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(a) (b) (c)

Figure 4. Electronic kz-dispersion for Sr2RuO4 along the cut of the Fermi surface highlighted in figure 5(a) by the black bar. 27BM (a),
M27BM1 (b) and M27BM2 (c). The corners of the surfaces are A = (0.2, 0.2, 0) 2π

a , B = (0.45, 0.45, 0) 2π

a , C = (0.2 2π

a , 0.2 2π

a , 2π

c ),
D = (0.45 2π

a , 0.45 2π

a , 2π

c ).

(a) (b)

Γ

X

M Γ

X

M

Figure 5. Comparison of the calculated multi-sheet Fermi surface of Sr2RuO4 in the kz = 0 plane in model M27BM2 (a) and the 27BM (b)
with the measured Fermi surface from [27]. The open dots (◦) give the experimental results. For an explanation of the small black bar in
(a) see figure 4.

Figure 6. Electronic band structure En(k) of Sr2RuO4 in the
M27BM2 taking into account the strongly enhanced anisotropy of
the real material as compared with the 27BM as a typical
DFT–LDA-based model.

force constants do not have an intrinsic physical meaning. On
the other hand, from our calculation we can conclude that on
a microscopic level an accurate electronic dispersion along the
c-axis is essential to understand the observed mode behaviour.

For a more detailed discussion of the rearrangement of the
phonon modes in figures 2 and 3 as a result of a modification
of the kz-dispersion of the BS it is useful to display in figure 7
the displacement patterns of some phonon modes relevant for
our studies.

In the 27BM the frequency of OZ
z is nearly degenerate

with AZ
2u (ferro). We denote the latter mode as ‘ferroelectric’

because its displacement pattern looks similar to that of the
ferro-like A�

2u (ferro) mode at the �-point, see figure 7. Here
the oxygen anions vibrate coherently against the cations in
the lattice and as a consequence the electric dipole moments
generated by the motion add constructively. With decreasing
kz-dispersion of the BS in M27BM1 and M27BM2 achieved by
a reduction of the relevant tight-binding parameters mentioned
above by 1/2 and 1/5, respectively, the frequency of AZ

2u
(ferro) increases by about 2 THz while OZ

z remains virtually
unchanged. This highly sensible behaviour with regard to
c-axis coupling in Sr2RuO4 has also been demonstrated for
La2CuO4 [12] where the frequency of AZ

2u (ferro) increases by
more than 3 THz as can bee read off from figure 1.

The physical origin for the sensitivity derives from the
fact that for symmetry reasons in case of AZ

2u (ferro) CF’s
can be excited in the screening process only at the ions in the
ionic layers, i.e. Oz , La in La2CuO4 and Oz , Sr in Sr2RuO4.

6
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Figure 7. Displacement patterns of certain phonon modes relevant
for the discussion of the phonon dynamics in Sr2RuO4. From left to
right we display in the first row A�

2u (ferro), A�
2u(↑↓), O�

z ; in the
second row AZ

2u(↑↓), OZ
z , AZ

2u (ferro) and in the third row �1/2 and
OX

B.

Table 1. Magnitudes of the charge fluctuations |δζκ | in units of 10−3

particles from equation (12) excited on the Ru 4d, Oxy 2p, Oz 2p and
Sr 4d orbitals in the OZ

z and AZ
2u (ferro) mode. The results are given

for comparison for the M27BM2 and the 27BM, respectively.

OZ
z AZ

2u (ferro)

Ru 4d Oxy 2p Oz 2p Sr 4d Ru 4d Oxy 2p Oz 2p Sr 4d

M27BM 26.98 7.62 0.02 0.49 0 0 3.22 0.34
27BM 27.34 6.43 0.63 3.57 0 0 9.19 4.69

The strength of these CF’s on the other hand is governed
by the matrix elements of the proper polarization part �κκ ′

in equation (11) of the corresponding out-of-plane ions and,
thus, depends critically on the coupling along the c-axis.
Contrarily, the renormalization of OZ

z is nearly exclusively
given by the CF’s on the Ru 4d and Oxy 2p orbitals in the
plane. For quantitative results compare with the CF’s listed
in table 1. This explains the inertness of OZ

z and the sensibility
of AZ

2u (ferro) with respect to the change of the electronic kz-
dispersion.

As a further example for the critical interrelation of c-axis
phonon dynamics and electronic c-axis coupling we note that

the steep branch connecting A�
2u (ferro) with OZ

z in La2CuO4

is missing in Sr2RuO4. In the latter case due to mode
rearrangement A�

2u (ferro) as the lowest of the three highest
modes at � is connected to AZ

2u (↑↓) that is the lowest of the
three highest modes at Z and not to OZ

z being the second highest
mode.

The BS underlying the M27BM2 is illustrated in figure 6.
As already mentioned the dispersion of the bands along the
� (kz) direction is extremely small, considerably smaller than
for the 27BM and for the case of La2CuO4. Thus Sr2RuO4

is a nearly two-dimensional Fermi liquid. However, as our
calculation in figures 2 and 3 have shown the remaining weak
three-dimensionality is crucial to obtain a reliable description
of certain c-axis phonons and the c-axis charge response in
general.

Strong hybridization between Ru 4d and Oxy 2p states is
evident from the BS in figure 6 because of the striking in-
plane dispersion of the bands. Moreover, we find a similar
shape of the partial density of states (PDOS) of the Ru 4d and
the Oxy 2p orbitals around the Fermi energy εF. The states
at εF are more strongly of Ru 4d type with some admixture
of Oxy 2p. The contribution of Oz 2p and Sr 4d around εF

is very small. In the M27BM2 we obtain for the PDOS at
εF ZRu 4d (εF) = 3.375 eV−1, ZOx y 2p (εF) = 0.795 eV−1,
ZOz 2p(εF) = 0.002 eV−1 and ZSr 4d(εF) = 0.001 eV−1.

There are qualitative differences concerning the origin of
hybridization comparing Sr2RuO4 with La2CuO4. Hybridiza-
tion in Sr2RuO4 is strongly favoured because the radial extent
of the 4d wavefunctions in Ru is much larger than for the 3d
wavefunctions in Cu. Concurrently this leads to a weaker in-
fluence of electron correlation effects, e.g. a smaller on-site
Coulomb repulsion U for Ru 4d compared to Cu 3d. In our
calculations we find for U(Cu 3d) = 1.005 dRyd and for
U(Ru 4d) = 0.619 dRyd. On the other hand, hybridiza-
tion is promoted in La2CuO4 as compared to Sr2RuO4 be-
cause the energy levels of the copper and oxygen ions are close
by in La2CuO4 but far off between ruthenium and oxygen in
Sr2RuO4.

A further remarkable difference of the BS in Sr2RuO4 and
La2CuO4 can be read off from figure 6 and the BS for La2CuO4

in [12]. In Sr2RuO4 up to three bands close to each other are
crossing the Fermi level giving rise to a three-sheet FS while
in La2CuO4 only one band is crossing and other bands are
more far away. Thus we have a completely different situation
as interband transitions are concerned which are on a much
lower energy scale in Sr2RuO4 as in La2CuO4. So we find for
En′(k + q) − En(k) with n′ �= n for q at the Z point in case
of Sr2RuO4 a minimum of 20.67 meV in the M27BM2 around
k = 0.68 π

a (1, 1, 0), see also figure 6, while in La2CuO4 we
obtain for the Z point at k = 0.42 π

a (1, 1, 0) a minimum
of 452.71 meV. This, of course, has important consequences
for the contribution of the interband transitions to �κκ ′ in
equation (11) concerning magnitude as well as energy scale.

For example the low energy scale of the interband
transitions in Sr2RuO4 can generate damping of possible
plasmons already at very low energy. Such a damping already
present in the collisionless regime together with additional
damping due to interactions between the electrons very likely

7
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leads to overdamping of the very low lying plasmons in
Sr2RuO4 along the c-axis. The energy of the latter in the
collisionless regime is only 5–6 meV along the � direction
as will be shown in section 3.3. Thus, the degree of
the remaining weak three-dimensionality quantified by our
computations is also very important for a possible existence
of plasmons and coupled phonon–plasmon modes around the
c-axis. Such modes have been predicted for La2CuO4 in our
recent calculations [12] which, however, is not so anisotropic
as Sr2RuO4 and the plasmons along the c-axis are at higher
frequencies that overdamping can be avoided.

In figures 5(a) and (b), respectively, the calculated FS
in the kz = 0 plane is shown for the M27BM2 and the
27BM, together with the experimental data points [27]. The
FS consists of the sheets α, β , γ . The α sheet is hole-like and
β and γ are electron-like. The γ sheet is dominantly derived
from the Ru 4dxy orbitals, the α and β sheets are primarily
related to the 4dxz and 4dyz orbitals of Ru which exhibit
anticrossing behaviour along the zone diagonal. The large
electron-like γ sheet passes right through the hybridization gap
between the α and β sheets.

The experimental results are not well described by the
27BM in figure 5(b). In particular the crossing between the β

and γ sheet in the 27BM which is typical for LDA calculations
is experimentally not reproduced. This is really a crossing and
not an anticrossing as for kz = 0 the bands related to dxy

and dxz/dyz orbitals have different symmetry and no mixing is
allowed. On the other hand, our modified BS model M27BM2
in figure 5(a) is in good agreement with the experimental FS.

In order to obtain also a more global impression of the
magnitude of the enhanced anisotropy in the M27BM2 as
compared to the 27BM we compare some FS parameters being
important for transport like the Drude plasma energy tensor and
the Fermi velocity tensor. The Drude tensor is defined as

h̄�p,i j =
(

8π

NVz

∑

kn

δ(En(k) − EF)vkn,ivkn, j

) 1
2

(16)

and the Fermi velocity is given by

〈v2
F,i j 〉1/2 =

(
2

N

∑

kn

θ(EF − En(k))vkn,ivkn, j

) 1
2

, (17)

with

vkn = 1

h̄

∂ En(k)

∂k
. (18)

The output of our calculation for the 27BM and the
M27BM2 is given in table 2. As can be seen we obtain a large
enhancement of the anisotropy ratio for the plasma frequencies
A� and of the Fermi velocities AvF by about a factor 18 and 10,
respectively, in the M27BM2 as compared to the LDA-based
27BM.

Additionally, we have included in table 2 the correspond-
ing calculated data for La2CuO4 [12]. Again we recognize the
by far larger anisotropy of Sr2RuO4 also in the transport prop-
erties. The values for �p,zz and 〈v2

F,zz〉1/2 are significantly in-
creased in La2CuO4.

Table 2. Calculated data for the Fermi surface parameters (Drude
plasma energy tensor, Fermi velocity tensor) and the anisotropy ratio
A� = �p,xx/�p,zz ; AvF = 〈v2

F,xx 〉1/2/〈v2
F,zz 〉1/2 in the 27BM and

M27BM2 for Sr2RuO4. For comparison the corresponding results are
also given for La2CuO4 [12].

h̄�p,xx h̄�p,zz 〈v2
F,xx 〉1/2 〈v2

F,zz 〉1/2 A� AvF

27BM 1045.94 65.50 6.63 0.88 15.97 7.53
M27BM2 1017.40 3.57 6.03 0.08 284.99 75.38
M31BM 648.60 25.25 2.99 0.11 25.69 27.18

3.2. Phonon dynamics in Sr2RuO4—comparison with
La2CuO4

In this section we investigate the phonon dynamics of Sr2RuO4

in the main symmetry directions � ∼ (1, 0, 0), � ∼ (1, 1, 0)

and � ∼ (0, 0, 1) and continue our discussion from section 3.1
of a comparison of important characteristics as found in our
earlier calculations for La2CuO4.

For a definite investigation of the phonon renormalization
induced by the nonlocal EPI effects of DF and CF type
mediated by the second term in equation (5) a quantitative
reference model for the calculation of the phonon dispersion
not including the nonlocal screening effects but representing
the important ionic component of binding in the material
is needed. Such a model sketched in section 2 including
approximately the local EPI effects is provided by the ab initio
RIM extended via covalent ion softening and scaling of certain
short-ranged pair potentials.

The result of the phonon dispersion along the main
symmetry directions is shown for the RIM in figure 8 and
compared with the experimental data from inelastic neutron
scattering (INS) [11]. The static effective charges found for the
model are Ru2.7+, O−1.58

xy , O−1.67
z and Sr1.9+. In particular the

charges of Ru and Oxy differ considerably from their nominal
values Ru4+ and O2−. This is due to the strong hybridization of
the Ru 4d and Oxy 2p states that reduces the amplitude of the
static effective charges in a mixed ionic–covalent compound
like Sr2RuO4 because of the charge transfer (CT) from the
cations to the anions is not complete as in the entirely ionic
case. Consistent with the result of the effective ionic charges
is an enhanced covalent character of the Ru–Oxy plane with a
dominant covalent scaling of the Ru–Oxy potential and a more
ionic character of the Sr–Oz layer with an ionic scaling of the
Sr–Oz potential as found in the calculations.

Altogether the RIM with these modifications yields good
structural data for the energy-minimized configuration. In
detail we get for the planar lattice constant a = 3.834 Å, for
the lattice constant along the c-axis c = 12.625 Å and for the
internal position of the Oz and the Sr ion z(Oz) = 0.163c
and z(Sr) = 0.142c. The experimental values at 15 K are
a = 3.862 Å, c = 12.723 Å, z(Oz) = 0.162c, z(Sr) =
0.147c [28]. From these data we extract that the tetragonal
distortion of the RuO6 octahedra is significantly smaller than
for the Cu O6 octahedra in La2CuO4. The ratio of the in-plane
to out-of-plane distance of the oxygen is 0.9196 in Sr2RuO4

but 0.7706 in La2CuO4.
The phonon dispersion of the RIM is in reasonable

agreement with the experiment as far as the branches with

8
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Figure 8. Calculated phonon dispersion of Sr2RuO4 for the RIM in the main symmetry directions � ∼ (1, 0, 0), � ∼ (1, 1, 0) and
� ∼ (0, 0, 1). The various symbols representing the experimental results are from [11] and indicate different irreducible representations.
The arrangement of the panels from left to right according to the different irreducible representations is as follows: |�1|�2(· · · , ◦),
�4(——,��)|�3|�1|�2(· · · , ◦), �4(——,��)|�3|�1(——, ��), �2(· · · , ◦)|�3|. Imaginary frequencies are represented as negative numbers.
The instability of the �4-branch is discussed in the text.

lower frequencies are concerned. This points to the importance
of the ionic component of binding in this material. Large
deviations are observed for the modes with higher frequencies.
In particular the high-frequency OBSM �1/2, OX

B and OZ
z ,

see figure 7, are not well described. The corresponding
frequencies are overestimated as compared with the full
calculation including DF’s and CF’s by about 5.8 THz, 7.4 THz
and 6.7 THz, respectively. This can be attributed according
to our approach to the missing screening of the Coulomb
interaction by DF’s and most importantly by CF’s.

Noticeable is the soft �4 mode at the X point and the
very low frequency of the branch in the measurements (the
notation for the irreducible representations characterizing the
symmetry of the modes �4 and �3 is interchanged with
the notation of [11]). This mode is associated with the
rotation of RuO6 octahedra around the c-axis. As indicated
by our calculations the softness of the rotational mode can be
considered as a precursor of a structural phase transition which
in the meanwhile has been observed in the Ca2−xSrx RuO4

series [11]. From our calculation in the RIM this transition can
be expected to be driven essentially by the strong component
of the ionic forces in Sr2RuO4. Contrarily, Sr2RuO4 does not
experience the tilt instability related to the �3 branch at the X
point found in our calculations for La2CuO4. This instability
correctly indicates the experimentally observed structural
phase transition from the high-temperature tetragonal (HTT)
to the low-temperature orthorhombic (LTO) structure. Also
this transition is mainly brought about by the long-ranged ionic
forces.

Substituting the smaller isovalent Ca ions for the Sr
ions induces a misfit between the Ca and Ru ions and
generates a close connection between the rotation of the RuO6

octahedra and the electronic and magnetic properties in the
Ca2−xSrx RuO4 series [11]. Besides the softening of the

rotational mode in the range 0.5 � x � 1.5 around x ≈ 0.5
a similar structural transition occurs due to the softening of
the RuO6 tilt mode [29]. In this context it is interesting that
at x ≈ 0.5 in the paramagnetic phase of Ca1.5Sr0.5RuO4 the
γ Fermi sheet gains a remarkable kz-dispersion and thus a
more three-dimensional character than Sr2RuO4 [30]. This
issue also emphasizes an interrelation between the electronic
kz-dispersion and the RuO6 distortions.

In figure 9 we display the calculated results of the phonon
dispersion admitting additionally to the RIM anisotropic DF’s.
This leads to a better agreement of the dispersion curves
with the inelastic neutron results. Checking these calculations
against the RIM the width of the spectrum is reduced towards
the experiment. The frequencies of the transverse and
longitudinal optical Eu modes polarized in the plane are
decreased by the DF’s and thereby the largest LO–TO splitting
is reduced at the �-point from 8.8 THz in the RIM to 6.3 THz
when dipolar polarization processes are included. At the same
time the frequencies of the A2u modes at � and Z are lowered
considerably by the DF’s in z-direction and the large splitting
of the A�

2u (ferro) mode of 10.13 THz in the RIM is reduced to
8.85 THz.

The high-frequency OBSM �1/2, OX
B and OZ

z are also
decreased due to the screening by the DF’s but are still
overestimated by about 3.9, 5.1 and 4 THz as compared
with the full calculation displayed in figure 10 including
additionally CF’s. Thus, the softening of these modes
compared with the RIM is of the order 2–3 THz and the
remaining effect of the renormalization can be assigned to the
CF’s on the Ru 4d and Oxy 2p orbitals.

The quantitative results for the CF’s according to
equation (12) are listed for the OBSM in table 3. The CF’s for
O�

z are also given in the table which prove to be very different
from those of OZ

z despite the same local displacement pattern.

9
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Figure 9. The same as in figure 8 but allowing additionally dipole fluctuations in Sr2RuO4. Imaginary frequencies are represented as negative
numbers. The instability of the �4-branch is discussed in the text.

Figure 10. The same as in figure 8 but including additionally dipole fluctuations and charge fluctuations on the basis of the M27BM2 in
adiabatic approximation. Imaginary frequencies are represented as negative numbers. The instability of the �4-branch is discussed in the text.

As can be extracted from figure 7 for O�
z and OZ

z the apex
oxygens Oz move locally in phase against or away from the
RuO layers. Because of the weak screening along the c-axis
and the corresponding large strength of the nonlocal EPI we
can expect these vibrations to induce CF’s in the RuO layers,
see table 3 for the calculated results. However, the CF’s differ
qualitatively between OZ

z and O�
z , respectively, because for the

�-point vibrations the following sum rule can be derived for
the CF’s δζκ [10],

∑

κ

δζκ (� σ) = 0. (19)

The sum over κ in equation (19) runs over the CF’s in
an elementary cell of the crystal and σ denotes the various
eigenmodes at �. Physically equation (19) means that local
charge neutrality of the elementary cell is maintained in

Table 3. Calculated charge fluctuations δζκ in Sr2RuO4 in the
M27BM2 excited on the Ru 4d, Ox 2p, Oy 2p, Oz 2p and Sr 4d
orbitals and induced by the OBSM �1/2, OX

B, OZ
z and the O�

z mode.
For the displacement patterns compare with figure 7. Units are in
10−3 particles, a positive value means an accumulation of electrons.

Ru 4d Ox 2p Oy 2p Oz 2p Sr 4d

�1/2 38.252 0 4.472 −0.002 0

OX
B 50.875 0 0 0.119 0.081

OZ
z 26.984 7.621 7.621 0.022 0.486

O�
z 12.521 −3.714 −3.714 −2.224 −0.319

the long-wavelength limit (q → 0), i.e. the mode-induced
CT is organized within the cell such that from the outside
the cell looks electrically neutral. Equation (19) puts a

10
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(a) (b)

Figure 11. Contour plot in the RuO plane (a) and perpendicular to the RuO plane (b) of the nonlocal part of the displacement-induced charge
density redistribution for the OZ

z mode calculated according to equation (20) for the M27BM2. The units are in 10−4e2/a3
B. The phase of OZ

z is
as in figure 7. Full lines (——) indicate accumulation of electrons in the corresponding region of space and broken lines (−· · ·−) indicate
regions of repulsion for the electrons.

strong constraint on the possible CT in the cell and thus on
the screening by CF’s. This restriction explains the small
renormalization of the frequency of only 0.581 THz of O�

z
in relation to OZ

z where the renormalization due to CF’s
is 4.046 THz. In [11] the pronounced softening and the
broadening of OZ

z is attributed to a strong coupling between
this phonon and an interlayer charge transport. Such an
interpretation is supported by our calculations for OZ

z where
the CF’s can be read off from table 3 and the CT is illustrated
in figure 11 in terms of the nonlocal part of the displacement-
induced rearrangement of the charge density according to

δρn(r, qσ) =
∑

a,κ

δζ a
κ (q, σ )ρκ (r − Ra

κ). (20)

The CF’s δζ a
κ in equation (20) are obtained from equation (12)

and the form-factors from equation (2).
In contrast to the constraint for O�

z expressed by
equation (19) no such restriction must be satisfied in the
metallic phase for OZ

z . While in O�
z only an intracell CT

is allowed summing up to zero, OZ
z generates CF’s of the

same sign in the cell (table 3). This finally leads to CF’s
of alternating sign in consecutive RuO layers (cells), i.e. an
interlayer (intercell) CT is set up, see also figure 11. The latter
provides an effective screening mechanism of the Coulomb
interaction and explains the strong renormalization of OZ

z as
compared with O�

z .
In the adiabatic approximation used in the calculations so

far the interlayer CT is instantaneous. It has to be replaced by a
dynamic collective charge transfer in case a phonon–plasmon
scenario would be realistic as for La2CuO4 in a nonadiabatic
region nearby the c-axis. The question if such a scenario is

also likely for the more anisotropic Sr2RuO4 is discussed in
section 3.3.

An important difference is found when considering the
OBSM in the cuprates and in Sr2RuO4, respectively. The
anomalous softening of the OBSM phonon anomalies, see
figure 12(a), in particular of the half breathing mode �1/2
which is typical for La2CuO4 [8], and most probably generic
for all the cuprate-based HTSC’s [9, 31] is strongly reduced in
our calculation as compared with La2CuO4. In the experiments
the softening is completely absent, see figure 12(b). Our
calculations show that there is a dominant microscopic reason
for the vanishing of the OBSM anomalies in Sr2RuO4, namely
the magnitude of the on-site Coulomb repulsion U(Ru 4d)

of the 4d orbitals of ruthenium. The latter is obviously
underestimated in our ab initio calculation based on the ionic
form-factor ρκ . Compared with the calculated value for the
on-site repulsion U(Cu 3d) = 1.005 dRyd in La2CuO4 which
leads to good results for the frequencies of the OBSM in this
material, the calculated value for ruthenium, U(Ru 4d) =
0.619 dRyd, seems not so reliable because of the more
incomplete 4d shell of Ru and the spherical average assumed
in our computations for the orbital densities. So, we increased
the value of the Ru 4d on-site repulsion in two steps towards
the calculated result for the Cu 3d orbital for comparison.
As a consequence the phonon anomalies completely vanish in
these calculations in agreement with experiment as displayed
in figure 12(b). Simultaneously by increasing U(Ru 4d) the
CF’s on the Ru 4d orbitals that are a measure for the nonlocal
electron–phonon coupling are strongly decreased as can be
seen in table 4.

In [32] and [33] sharply peaked magnetic fluctuations at
q0 = 0.6 π

a (1, 1, 0) have been observed for Sr2RuO4. These
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(a) (b)

Figure 12. Calculated dispersion of the highest �1 and �1 branch in La2CuO4 [8] (a) and Sr2RuO4 (b). In (b) these branches have been
obtained for three different values of the on-site repulsion U(Ru 4d) of the Ru 4d orbitals and are characterized by different line types,
U(Ru 4d) = 0.619 dRyd (——), U(Ru 4d) = 0.769 dRyd (· · ·) and U(Ru 4d) = 1.005 dRyd (– – –). The experimental values are indicated
as open squares (��) [11].

Table 4. Calculated magnitudes of the charge fluctuations |δζκ | in
units of 10−3 particles on the Ru 4d orbitals generated by the �1/2
and the OX

B mode in dependence of the on-site Coulomb repulsion
U(Ru 4d). ν is the frequency of the mode in units of THz. The
results are listed from left to right taking for U(Ru 4d) 0.619, 0.769
and 1.005 dRyd. The latter value matches the calculated value of U
for the Cu 3d orbital in La2CuO4 and the first value is the calculated
ab initio result for the Ru 4d orbitals.

�1/2 OX
B

|δζRu 4d| 38.252 26.603 17.871 50.875 33.764 22.048
ν 19.635 20.642 21.381 21.178 22.875 24.031

fluctuations have been related to dynamical nesting properties
between the flat α and β sheets of the FS, compare with
figure 5(a). Braden et al [11] have performed a search
for Kohn anomalies in the phonon spectrum related to this
nesting structure. Promising candidates would be the high-
frequency �1 modes which are coupled to the Ru 4d CF’s.
However no signature for a Kohn anomaly is present in the
experiments as well as in the calculation in figure 10. Another
possibility discussed in [11] is the longitudinal acoustic �1

branch where a small dip is observed just around q0, see
figure 13. From our calculations it seems very unlikely that
this dip is a nesting effect because our computations of the
phonon dispersion shows that this feature is well described by
a complex anticrossing between the three lowest branches with
�1 symmetry, as shown in figure 13. So we do not find in
Sr2RuO4 any evidence for EPI driven by nesting of the FS.

3.3. Search for a phonon–plasmon scenario in Sr2RuO4

We investigate for Sr2RuO4 the possibility of a phonon–
plasmon scenario along the c-axis and in a small region around
this axis by performing calculations of the coupled electron–
phonon dynamics in the nonadiabatic regime. This is achieved

Figure 13. Calculated phonon dispersion in the M27BM2 of the
three lowest �1 branches displaying a complex anticrossing
behaviour. The open squares (��) are the experimental data [11].

approximatively by allowing the proper polarization part �κκ ′

of the DRF to depend on the frequency of the perturbation.
Different from static screening in the adiabatic approximation
this leads to dynamical screening of the Coulomb interaction.
A nonadiabatic treatment of the charge response and a related
phonon–plasmon coupling has been shown recently to be a
realistic option for La2CuO4 if the real anisotropy of the
material is taken into account in the theory [12].
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Figure 14. Real- and imaginary part of det[εκκ ′(q, ω)] at the Z point
in arbitrary units for Sr2RuO4 in the M27BM2 (a) and for La2CuO4

in the M31BM [12] (b). The real part is given by the full line (——)
and the imaginary part by the dotted line (· · ·).

Due to the much weaker kz-dispersion of the electronic
band structure obtained in the computation for Sr2RuO4 as
compared with La2CuO4 we can expect much lower plasmon
frequencies along the c-axis. This conjecture can be shown
to be true for example by calculating at the Z point the free-
plasmon frequency according to equation (15) and checking
the result against La2CuO4, see figure 14. From the zero
crossing of the real part and the vanishing of the imaginary
part of det[εκκ ′(Z , ω)] we get for Sr2RuO4 in the M27BM2
the very small value of ωp(Z) = 5.55 meV (1.342 THz) while
for La2CuO4 we have ωp(Z) = 39.33 meV (9.509 THz) [12]
which is by a factor of seven larger. This also expresses
the much stronger anisotropy of Sr2RuO4 in relation to the
cuprates.

In the analysis of the phonon–plasmon scenario we have
assumed the collisionless regime, i.e. the quasiparticles (QP)
do not scatter each other and damping is only possible
via intraband electron–hole decay and low lying interband
transitions. However, in the cuprates and also in Sr2RuO4

QP scattering due to electron–electron interaction and other
degrees of freedom is certainly important. This leads to
damping and possibly overdamping of c-axis plasmons at
sufficiently low frequencies and so the latter may cease to be
well defined collective excitations of the Fermi liquid.

In order to make an estimate of the range of frequencies
where c-axis plasmons should exist we examine the zero

(a) (b)

Figure 15. Calculated nonadiabatic coupled phonon–plasmon
dispersion within the M27BM2. (a) �1 modes (——) in the
collisionless regime, the coupling modes at � (A�

2u (ferro, na)) and at
Z (OZ

z (na)) are shown as black dots (•). (b) �′
1 modes (——) along

the �′ = (ε 2π

a , 0, 2π

c ) direction from Z (ε = 0) to Z′(ε = 0.02). The
black dot (•) at Z and Z′ are the OZ

z (na) and approximately the OZ
z

mode in adiabatic approximation, respectively. In both figures the
broken line (– – –) denotes the free-plasmon branch and the dotted
line (· · ·) the borderline for damping due to electron–hole decay.

crossing of the real part of the well known dielectric function
of an electron gas

ε(ω) = ε∞ − ω2
p

ω2 + γ 2
. (21)

ε∞ is the high-frequency dielectric constant, γ = 1
τ

the
scattering rate of the QP’s along the c-axis. Equating ε(ω) to
zero we have the equation,

ω2 = ω2
p

ε∞
− γ 2. (22)

Using for γ the value given in [34] (γ = 170 cm−1) in the
normal state of La2CuO4 and the calculated value for the high-
frequency dielectric constant along the c-axis εzz∞ ≈ 2 [19]
we obtain ω2 � 0 for ωp � 7.21 THz. For smaller plasmon
frequencies we have ω2 < 0, i.e. the plasmon has a diffusive
pole and hence the c-axis plasmon is overdamped in the normal
state. It should be remarked that larger values for εzz∞ would
increase the critical value for ωp beyond that the plasmon could
exist. For example setting εzz∞ = 3 or εzz∞ = 4 we would
have ωp � 8.83 THz or 10.19 THz, respectively. Assuming a
similar c-axis scattering rate of the QP’s for Sr2RuO4 we regard
ωp ≈ 7 THz as a reasonable limiting frequency beyond which
plasmons most likely are not overdamped.

Thus, from our calculations of the plasmon along the c-
axis (� direction) displayed in figure 15(a) which are at very
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low frequencies around 1 THz we conclude that the latter are
overdamped. On the other hand at larger plasmon frequencies
which result in case the wavevector q is not strictly parallel to
the c-axis, as shown for example in figure 15(b), the plasmon
can acquire enough energy to resist overdamping and may exist
as a collective excitation.

In figure 15(a) we identify instead of the six �1 branches
of the adiabatic approximation (compare with figure 2(c))
an additional branch due to phonon–plasmon coupling. The
free-plasmon has frequencies around 1 THz and is nearly
dispersionless along the � direction. This is in contrast
with the situation in La2CuO4 [12] where the free-plasmon
has significant higher frequencies and increases from about
9.5 THz at the Z point to about 12.8 THz at �. Thus, the
plasmon is not overdamped along the c-axis in La2CuO4 while
the phonon–plasmon scenario calculated in the collisionless
regime for Sr2RuO4 as displayed in figure 15(a) is not realistic.

Analogous to the situation in La2CuO4 [6, 12] the
calculated free-plasmon frequencies rapidly increase in
proportion to the transverse component of the q vector in a
small nonadiabatic region of the charge response around the
c-axis. We have performed calculations along the �′′ =
(ε 2π

a , 0, ζ 2π
c ) and �′ = ζ(ε 2 π

a , 0, 2π
c ) direction in this region,

see figure 16, for different small ε-values to study a possible
phonon–plasmon scenario in Sr2RuO4. We do not go into
the details of these computations here but what is important
concerning the question of overdamping is that for ε � 0.0040
in case of the �′ direction and for ε � 0.0025 in the �′′
direction the free-plasmon frequency is larger than 7 THz,
the estimated value for the phonon–plasmon scenario to exist.
From the calculations we find that the longitudinal A�

2u (ferro,
na) mode at � (figure 15(a)) is virtually unchanged at ε =
0.0040 and so does exist around 19 THz. The same holds true
for OZ

z (na) at the Z point being practically the same as OZ′
z for

ε = 0.0025 in the �′′ direction. Similar as for La2CuO4 [12]
with increasing ε A�

2u (ferro, na) and OZ′
z (na) rapidly leave the

spectrum to high frequencies.
In case of OZ′

z (na) this mode behaviour can also be
extracted from figure 15(b) where we have presented our
calculated results of the dispersion of the coupled phonon–
plasmon �′

1 modes along the �′ = (ε 2π
a , 0, 2π

c ) direction from
Z = (0, 0, 2π

c ) to Z′ = (ε 2π
a , 0, 2π

c ) for 0 � ε � 0.02.
The highest mode at Z is the OZ

z (na) mode also seen in
figure 15(a) as a black dot. The broken line is the dispersion
of the free-plasmon branch calculated from equation (15) and
the dotted line is the borderline for damping due to electron–
hole decay investigated from max

k∈BZ (En(k) − En(k + q))

for the bands crossing the Fermi level. From this figure
the range of the region with a nonadiabatic charge response
can be estimated. It is characterized by the steep branch
which ultimately converges to the frequency of the adiabatic
OZ

z mode (black dot at Z′). Similar as in La2CuO4 this
nonadiabatic region is very small and can be estimated from
the figure at about ε = 0.01. Unlike the case of La2CuO4 the
phonon–plasmon dispersion in figure 15(b) should not exist
in the full range of frequencies according to our estimate for
overdamping below about 7 THz.

Parallel to the investigation of the OZ
z mode in

La2CuO4 [6, 12], the line-broadening of this mode observed

Figure 16. Schematic representation of the nonadiabatic region in
the (kx , kz) plane with the directions �′ = (ε 2π

a , 0, 2π

c ),
�′ = ζ(ε 2π

a , 0, 2π

c ) and �′′ = (ε 2π

a , 0, ζ 2π

c ). ζ ∈ [0, 1]. na:
nonadiabatic region; ad: adiabatic region.

by [11] in Sr2RuO4 can be understood from the calculated
phonon–plasmon scenario. Experimentally there is a limited
wavevector resolution in INS for the transverse direction
perpendicular to the c-axis which for the experiments in
La2CuO4 is on the average ε = 0.03 [35]. Thus, the relevant
frequency range sampled in the measurement for OZ

z is over
the steep branch beyond which the mode develops an OZ

z -
like displacement pattern. According to the calculations this
sampling occurs for mode frequencies larger than 12.5 THz
and leads to a corresponding broadening of the linewidth for
OZ

z observed in the experiment.
Because the region with a metallic adiabatic charge

response outweighs by a factor of roughly three the
nonadiabatic region we can attribute to the OZ

z mode an
adiabatic frequency of about 15.3 THz. The �′

1 branch
starting at OZ

z (na) in figure 15(b) has not been observed in
the experiments so far because a very high q-space solution
transverse to the c-axis would be needed to resolve the mode
dispersion in the small nonadiabatic sector.

In [12] we have pointed out for La2CuO4 the relevance of
a strongly coupling nonadiabatic OZ

z mode. So it is interesting
to see if such a large EPI also exists for OZ

z (na) in Sr2RuO4.
As a parameter for the strength of the EPI in a certain mode
(qσ) we have used in the past the orbital averaged changes
of the self-consistent crystal potential δVκ(�qσ), [6, 12]. In
case of La2CuO4 we obtain in units of meV |δVCu 3d| =
955.98 and |δVO 2p| = 515.98 which should be compared
with the considerably reduced strength |δVRu 4d| = 277.24 and
|δVO 2p| = 316.64 in Sr2RuO4.

Altogether, we conclude from our calculations for
Sr2RuO4 that nonadiabatic EPI via phonon–plasmon coupling
is not possible strictly along the c-axis but most likely away
from this axis in a very small region at higher free-plasmon
frequencies. Moreover, the strength is significantly smaller as
in La2CuO4.
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We have argued above that the longitudinal ferroelectric
A�

2u (ferro, na) mode exists in the nonadiabatic sector around
the � point at about 19 THz. This nonadiabatic result
helps to understand why c-axis optical activity seen in the
experiments [36] is possible despite the fact that Sr2RuO4 is
in the metallic phase. In [36] three c-polarized A2u phonon
structures at 6.04, 10.88 and 14.51 THz have been detected
which agree well with the calculated transverse A�

2u modes
in the M27BM2 at 5.16, 10.42 and 14.49 THz. The by far
largest oscillator strength is obtained for the mode at 10.88 THz
and according to our calculation this is the ferroelectric mode
A�

2u (ferro). Consistent with the large oscillator strength of
this mode in the experiment our nonadiabatic result for the
longitudinal ferroelectric mode A�

2u (ferro, na) predicts a very
large A2u splitting of about 9 THz. This splitting dominates
the infrared response for polarization along the c-axis. Further
we find in the calculations two other longitudinal A2u modes at
12.379 and 6.964 THz which define corresponding splittings
with the transverse modes above.

From a theoretical point of view it is important to
remark that optical activity in the metallic phase cannot be
explained using the adiabatic approximation for a calculation
of the phonon dispersion as is commonly done by applying
static DFT for the metal [22–25]. In such calculations
there will be no LO–TO or A2u splittings being a measure
for the oscillator strength because the transverse effective
charges vanish if the metallic phase is treated in adiabatic
approximation and consequently the induced dipole moments
defining the oscillator strength in the dielectric matrix vanish
too. Thus, there will be no optical activity in a metal by the
phonons treated in adiabatic approximation which underlies
static DFT.

4. Summary and conclusions

We have shown that for a reliable description of the c-axis
charge response in Sr2RuO4 and in particular the phonon
dynamics along this axis a typical LDA-based model is too
isotropic and must be modified to account for the much weaker
interlayer coupling in the real material. Similar as in the
cuprates studied earlier the large anisotropy in Sr2RuO4 is
considerably underestimated in DFT–LDA calculations of the
electronic BS.

From our investigations we conclude that an accurate rep-
resentation of the very fainty kz-dispersion of the BS neverthe-
less is essential to understand the c-axis polarized �1 modes.
While the LDA-based model (27BM) is insufficient a modified
much more anisotropic model (M27BM2) is well suited.

We have examined the multi-sheet FS of Sr2RuO4 with the
two models and found that the experimental results for the FS
are not well described within the 27BM. On the other hand,
the M27BM2 shows a good agreement with the measured FS.
This model can be considered to represent the real anisotropy
in Sr2RuO4 sufficiently well.

We have also calculated the magnitude of the strongly
enhanced anisotropy in the M27BM2 compared with the 27BM
more globally in terms of some Fermi surface parameters
important for transport properties. Checking both models
against each other we find an enhancement of about a factor

18 for the anisotropy ratio of the Drude plasma energy tensor
and of about a factor of 10 for the Fermi velocity tensor.
While the calculations demonstrate that Sr2RuO4 is a nearly
two-dimensional Fermi liquid significantly more anisotropic
than La2CuO4 the remaining very weak three-dimensionality
is crucial to achieve a solid representation of the c-axis charge
response and of certain c-axis phonons.

We have calculated in detail the phonon dispersion in
Sr2RuO4 along the main symmetry directions in the BZ and
compared the result with the dispersion of the HTSC La2CuO4

being structural isomorphic. A good overall agreement of the
calculated results is found for Sr2RuO4 with the INS data.
Comparing the results of the calculated phonon dynamics in
the RIM with a model allowing additional DF’s and finally
the full model including DF’s and CF’s the renormalization
of certain modes which are strongly coupled via nonlocal EPI
effects of DF and CF type has been analysed in detail. In this
context an important point of the comparison with La2CuO4

is that the anomalous softening of the high-frequency oxygen
bond-stretching modes, being generic for the cuprate-based
HTSC’s, is strongly reduced or completely absent in Sr2RuO4

depending primarily on the magnitude of the on-site Coulomb
repulsion of the Ru 4d orbitals.

We have also investigated the possibility of a Kohn
anomaly in the �1 modes of Sr2RuO4 as discussed in the
literature. In our calculations we do not find any evidence
for such an anomaly driven by nesting of the FS. Instead, the
dip in the lowest �1 branch seen in the experiments is well
explained in our computations by an anticrossing effect of the
three lowest �1 branches.

Finally, we have examined the question of a possible
phonon–plasmon scenario in a small region of nonadiabatic
charge response around the c-axis which has been shown to
be a realistic option in La2CuO4.

Due to the much weaker electronic kz-dispersion obtained
for Sr2RuO4 the calculated free-plasmon frequencies along the
c-axis are about a factor of eight smaller in the collisionless
regime than in La2CuO4. We have argued that damping
generated by the interactions between the QP’s as well as
interband transitions which are at much lower energy scale
than in La2CuO4 leads to an overdamping of the plasmon
strictly along the c-axis in contrast to La2CuO4. However,
a coupled phonon–plasmon scenario becomes likely also in
Sr2RuO4 at higher free-plasmon frequencies. This occurs in
case the wavevector is not strictly parallel to the c-axis but has
a small transverse component. We find that the strength of this
nonlocal nonadiabatic coupling is significantly weaker than in
La2CuO4.

Ultimately we have explained by our calculations of the
nonadiabatic charge response the linewidth of the apex oxygen
breathing mode at the Z point and why c-axis optical activity
as seen in the experiments is possible despite the fact that
Sr2RuO4 is in the metallic phase.
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